
The dual Hahn  q-polynomials in the lattice  and the  q-algebras  and

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 1435

(http://iopscience.iop.org/0305-4470/29/7/015)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 1435–1451. Printed in the UK

The dual Hahn q-polynomials in the lattice
x(s) = [s]q[s+ 1]q and the q-algebrasSUq(2) and
SUq(1, 1)
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Abstract. The dualq-Hahn polynomials in the non-uniform latticex(s) = [s]q [s + 1]q are
obtained. The main data for these polynomials are calculated (the square of the norm of the
coefficients of the three-term recurrence relation, etc), as well as the lattice representation as a
q-hypergeometric series. The connection with the Clebsch–Gordan coefficients of the quantum
algebrasSUq(2) andSUq(1, 1) is also given.

1. Introduction

It is well known that the Lie groups representation theory plays a very important role in
quantum theory and in special function theory. Group theory is an effective tool for the
investigation of the properties of different special functions, moreover, it gives the possibility
of unifying various special functions systematically. In a very simple and clear way, on the
basis of group representation theory concepts, the special function theory was developed
in the classical book of Vilenkin [1] and in the monographs of Vilenkin and Klimyk [2],
which have an encyclopedic character.

In recent years, the development of the quantum inverse problem method [3] and the
study of solutions of the Yang–Baxter equations [4] have given rise to the notion of quantum
groups and algebras, which are, from the mathematical point of view, Hopf algebras [5].
They are of great importance for applications in quantum integrable systems, in quantum
field theory, and statistical physics (see [6] and references contained therein). They have
attracted much attention in quantum physics, especially after the introduction of theq-
deformed oscillator [7, 8]. They have also been used for the description of the rotational and
vibrational spectra of deformed nuclei [9–11] and diatomic molecules [12–14]. However,
to apply them it is necessary to have a well developed theory of their representations.
In quantum physics, for instance, the knowledge of the Clebsch–Gordan coefficients (3-j

symbols), Racah coefficients (6-j symbols) and 9-j symbols [15] is crucial for applications
because all the matrix elements of the physical quantities are proportional to them.

The present work represents the definite part of the investigations about the connection
between different constructions of the Wigner–Racah algebras for theq-groups andq-
algebrasSUq(2) andSUq(1, 1) and the orthogonal polynomials of discrete variables (see also
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[16, 2 vol III, 17], as well as [18, 21–24, 26]). For a review ofq-polynomials see [24, 26]. In
[19] the properties of the Clebsch–Gordan coefficients (CGCs) of these two quantum algebras
SUq(2) and SUq(1, 1) and theq-analogue of the Hahn polynomials on the exponential
lattice x(s) = q2s were considered in detail. In a similar way the Racah coefficients
(6-j symbols) for suchq-algebras have been connected with the Racah polynomials in
the latticex(s) = [s]q [s + 1]q [20, 21]. Recently, theq-analogues of the Kravchuk and
Meixner polynomials on the non-uniform latticex(s) = q2s were investigated (see [23] and
references contained therein) in order to find their connection with the WignerD-functions
and BargmannD-functions for theq-algebrasSUq(2) andSUq(1, 1), respectively.

To continue along this line it seems reasonable to investigate the interrelation between
the CGCs for the quantum algebrasSUq(2) and SUq(1, 1) with q-analogues of the dual
Hahn polynomials on the non-uniform latticex(s) = [s]q [s + 1]q . In order to solve this
problem in sections 2 and 3 we discuss the properties of theseq-polynomials, their explicit
formula, and the representation in terms of the generalizedq-hypergeometric functions3F2

[24] is obtained. In section 4, from the detailed analysis of the finite difference equations
(2) for theseq-polynomials, we deduce the relation between them and theCGCs for SUq(2),
which help us to draw an analogy between the basic properties of the Clebsch–Gordan
coefficients and these orthogonalq-polynomials. Since these coefficients are studied from a
viewpoint of the theory of orthogonal polynomials, a group-theoretical interpretation arises
for the basic properties of dual Hahnq-polynomials. In section 5 we find the relation
between Clebsch–Gordan coefficients for the quantum algebraSUq(1, 1) and the dual Hahn
q-polynomials in two different ways; the first is as in the previous case, i.e. comparing the
finite difference equation for the dual Hahnq-polynomials and the corresponding recurrence
relation for theCGC, and the second uses the well known relation between theCGCs for the
q-algebraSUq(1, 1) and theCGCs for SUq(2).

Using the connection between theCGCs and theseq-polynomials (see formulae (19) and
(24) later) we find explicit formulae for theCGCs, as well as their representation in terms
of the generalizedq-hypergeometric functions3F2 or the basis hypergeometric series3ϕ2

[27].
In conclusion of this section it should be noted that a new approach to the investigation of

the connection between the representation theory of algebras and the theory of orthogonal
polynomials was suggested recently [28–32]. This allows one to also solve a new class
of problems (so-calledquasi-exactly solvable problems). This approach was extended
to the q-difference equation in [33]. In [34] it was shown that a similar approach can
also be formulated to study the classical orthogonal polynomials in the exponential lattice
x(s) = q2s [24]. As for the quadratic latticex(s) = s(s + 1) and theq-quadratic lattice
x(s) = [s]q [s + 1]q , the extension of this approach to such types of problem has not been
found yet. Therefore, we apply here the standard method of [24] to the analysis of the dual
Hahnq-polynomials in theq-quadratic lattice.

2. The dual Hahn q-polynomials in the non-uniform lattice x(s) = [s]q[s+ 1]q

Let us start with the study of some general properties of orthogonal polynomials of a discrete
variable in non-uniform lattices. Let

σ̃ (x(s))
1

1x(s − 1
2)

∇Y (s)

∇x(s)
+ 1

2
τ̃ (x(s))

[
1Y(s)

1x(s)
+ ∇Y (s)

∇x(s)

]
+ λY (s) = 0

∇f (s) = f (s)− f (s − 1) 1f (s) = f (s + 1)− f (s)

(1)
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be the finite difference equation of hypergeometric type for some lattice functionx(s),
where∇f (s) = f (s)− f (s − 1) and1f (s) = f (s + 1)− f (s) denote the backward and
forward finite difference quotients, respectively. Hereσ̃ (x) and τ̃ (x) are polynomials in
x(s) of degree at most two and one, respectively, andλ is a constant. It is convenient (see
[24, 25]) to rewrite (1) in the equivalent form

σ(s)
1

1x(s − 1
2)

∇Y (s)

∇x(s)
+ τ(s)

1Y(s)

1x(s)
+ λY (s) = 0

σ(s) = σ̃ (x(s))− 1
2 τ̃ (x(s))1x(s − 1

2) τ (s) = τ̃ (x(s)).

(2)

It is known ([24, 25]) that for some special kind of lattices, solutions of (2) are orthogonal
polynomials of a discrete variable, in other words they satisfy the orthogonality relation

b−1∑
si=a

Pn(x(si))Pm(x(si))ρ(si)1x(si − 1
2) = δnmd2

n si+1 = si + 1 (3)

whereρ(s) is some non-negative function (weight function), i.e.

ρ(si)1x(si − 1
2) > 0 (a 6 si 6 b − 1)

supported in a countable set of the real line(a, b) and such that

1

1x(s − 1
2)

[σ(x)ρ(x)] = τ(x)ρ(x)

σ (s)ρ(s)xl(s)xk(s − 1
2)|s=a,b = 0 ∀k, l ∈ N (N = {0, 1, 2, . . .}).

Hered2
n denotes the square of the norm of the corresponding orthogonal polynomials.

They satisfy a three-term recurrence relation (TTRR) of the form

x(s)Pn(s) = αnPn+1(s)+ βnPn(s)+ γnPn−1(s) P−1(s) = 0 P0(s) = 1. (4)

The polynomial solutions of equation (2), denoted byYn(x(s)) ≡ Pn(s), are uniquely
determined, up to a normalizing factorBn, by the difference analogue of the Rodrigues
formula (see [24, p 66, equation (3.2.19)])

Pn(s) = Bn

ρ(s)
∇(n)

n [ρn(s)] ∇(n)
n =

∇
∇x1(s)

∇
∇x2(s)

. . .
∇
∇xn(s)

[ρn(s)] (5)

where

xm(s) = x
(
s + m

2

)
ρn(s) = ρ(n+ s)

n∏
k=1

σ(s + k).

These solutions correspond to some values ofλn—the eigenvalues of equation (2).
Let us to start with the study of the dual Hahnq-polynomials in the particular non-

uniform latticex(s) = [s]q [s + 1]q , where [n]q denotes the so calledq-numbers,

[n]q = qn − q−n

q − q−1

andq is, in general, a complex number|q| 6= 1.
We will use a result by Nikiforovet al [24, theorem 1, p 59] who established that for

the lattice functionsx(s) = c1q
2s + c2q

−2s + c3, wherec1, c2, andc3 are some constants,
equation (2) has a polynomial solution uniquely determined, up to a constant factorBn, by
(5). A simple calculation shows that our latticex(s) = [s]q [s + 1]q belongs to this class.
In fact we have

x(s) = q

(q − q−1)2
q2s + q−1

(q − q−1)2
q−2s − q + q−1

(q − q−1)2
(6)
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so for the latticex(s) = [s]q [s + 1]q it is possible to obtain polynomial solutions of
equation (2) (see the appendix), and these solutions are uniquely determined by the
Rodrigues formula (5).

We are interested in constructing the polynomials in such a way that, in the limitq → 1,
they and all their principal attributes (σ(s), τ(s), λn, ρ(s), d2

n , TTRR coefficientsαn, βn,
γn, etc) transform into the classical ones. We will call these polynomialstheq-analogue of
the classical dual Hahn polynomials in the non-uniform latticex(s) = [s]q [s+1]q and they
will be denoted byW(c)

n (s, a, b)q (see also [25]). In order to obtain theseq-polynomials let
us define theσ(x(s)) function such that in the limitq → 1 it coincides with theσ(s) for
the classical polynomials, i.e.

lim
q→1

σ(x(s)) = (s − a)(s + b)(s − c).

Therefore we will choose the functionσ(s) as follows:

σ(s) = qs+c+a−b+2[s − a]q [s + b]q [s − c]q . (7)

Following chapter III in [24] we can findthe main datafor the polynomialsW(c)
n (s, a, b)q .

The results of these calculations are provided in table 1 (see also the appendix). Everywhere,
∀x ∈ N, we denote by [x]q ! the q-factorial which satisfies the relation [x + 1]q ! =
[x + 1]q [x]q ! and coincides with thẽ0q(x) function introduced by Nikiforovet al ([24,
p 67, equations (3.2.23)–(3.2.25)]). In general∀x ∈ R theq-factorial is defined in terms of
the standard0q(x) (see [24] or [26]) by the formula

0̃q(x + 1) = [x]q ! = q−x(x−1)/20q(x + 1).

It is clear that all characteristics of theseq-polynomials coincide with the corresponding
attributes for the classical dual Hahn polynomials (see [24, p 109, table 3.7]) in the limit
q → 1.

Table 1. Main data for theq-analogue of the Hahn polynomialsWc
n(s, a, b)q .

Yn(s) Wc
n (x(s), a, b)q x(s) = [s]q [s + 1]q

(a, b) (a, b)

ρ(s)
q−s(s+1)[s + a]q ![s + c]q !

[s − a]q ![s − c]q ![s + b]q ![b − s − 1]q !
− 1

2 6 a 6< b − 1 |c| < a + 1
σ(s) qs+c+a−b+2[s − a]q [s + b]q [s − c]q
τ (s) −x(s)+ qa−b+c+1[a + 1]q [b − c − 1]q + qc−b+1[b]q [c]q
λn q−n+1[n]q

Bn

(−1)n

[n]q !

ρn(s)
q−s(s+1+n)−n2/2+n(a+c−b+ 3

2 )[s + a + n]q ![s + c + n]q !

[s − a]q ![s − c]q ![s + b]q ![b − s − n− 1]q !

d2
n q−ab−bc+ac+a+c−b+1+2n(a+c−b)−n2+5n [a + c + n]q !

[n]q ![b − c − n− 1]q ![b − a − n− 1]q !

an

q−
3
2 n(n−1)

[n]q !
αn q3n[n+ 1]q
βn q2n−b+c+1[b − a − n+ 1]q [a + c + n+ 1]q

+q2n+2a+c−b+1[n]q [b − c − n]q + [a]q [a + 1]q
γn qn+3+2(c+a−b)[n+ a + c]q [b − a − n]q [b − c − n]q
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3. The explicit formula for the dual Hahn q-polynomials in the lattice
x(s) = [s]q[s+ 1]q. The finite difference derivative formulae

3.1. The explicit formula for the dual Hahnq-polynomials

In order to obtain the explicit formula for theq-polynomialsW(c)
n (s, a, b)q we will use the

Rodrigues formula (5). Firstly, notice that for the latticex(s) = [s]q [s + 1]q verifies that
the relation

x(s)− x(s − i) = [i]q∇x(s − (i − 1)/2) = [i]q [2s − i + 1]q

holds. Then, by induction we can find the following expression for the operator∇(n)
n [f (s)]:

∇(n)
n [f (s)] =

n∑
m=0

(−1)n+m[n]q ![2s − n+ 2m+ 1]q
[m]q ![n−m]q !

∏m
k=0[2s +m+ 1− k]q

f (s − n+m).

Thus, the Rodrigues formula for the latticex(s) = [s]q [s+1]q takes the form (see also [24,
p 69, equation (3.2.30)])

Pn(s) = Bn

n∑
m=0

(−1)n+m[n]q ![2s − n+ 2m+ 1]q
[m]q ![n−m]q !

∏m
k=0[2s +m+ 1− k]q

ρn(s − n+m)

ρ(s)
. (8)

Now using the main data for theW(c)
n (s, a, b)q polynomials (table 1), equation (8) can be

rewritten in the form

W(c)
n (s, a, b)q = [s − a]q ![s + b]q ![s − c]q ![b − s − 1]q !

qn2/2−sn−n(a+c−b+ 5
2 )[s + a]q ![s + c]q !

×
n∑

m=0

(−1)m[2s − n+ 2m+ 1]q
[m]q ![n−m]q ![2s +m+ 1]q !

× q−m2−2sm+nm−m[2s +m− n]q ![s + a +m]q ![s + c +m]q !

[s − a − n+m]q ![s + b − n+m]q ![s − c − n+m]q ![b − s −m− 1]q !
.

(9)

As a consequence of this representation we obtain the values ofW(c)
n (s = a, a, b)q and

W(c)
n (s = b − 1, a, b)q at the ends of the interval of orthogonality(a, b):

W(c)
n (s = a, a, b)q = (−1)nq−n2/2+n(c−b+ 3

2 )[b − a − 1]q ![a + c + n]q !

[n]q ![a + c]q ![b − a − n− 1]q !
(10)

W(c)
n (s = b − 1, a, b)q = q−n2/2+n(c+a+ 3

2 )[b − a − 1]q ![b − c − 1]q !

[n]q ![b − c − n− 1]q ![b − a − n− 1]q !
. (11)

In order to find the representation of these polynomials in terms ofq-hypergeometric
functions we can follow [24] (chapter 3, section 3.11.2, p 135). Using the corresponding
constantsc1, c2, andc3 (6) for the non-uniform latticex(s) = [s]q [s + 1]q we obtain (see
[24, equation (3.11.36), p 146]) the following:

W(c)
n (x(s), a, b)q = (a − b + 1|q)n(a + c + 1|q)n

q(n/2)(s+ 1
2 (n−1))− 1

2 (c+a−b+1)[n]q !

× 3F2

(−n, a − s, a + s + 1
a − b + 1, a + c + 1

; q, q
1
2 (b−c−n)

)
(12)

where by definition

3F2

(
a1, a2, a3

b1, b2
; q, z

)
=
∞∑

k=0

(a1|q)k(a2|q)k(a3|q)k

(b1|q)k(b2|q)k(q|q)k
zk
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and

(α|q)n =
n−1∏
k=0

[α + k]q = [α]q [α + 1]q . . . [α + n− 1]q = 0̃q(α + n)

0̃q(α)
.

3.2. The finite difference derivative formulae for the dual Hahnq-polynomials

To obtain the finite difference derivative formulae for theseq-polynomials we will follow
[24] (p 24, equation (2.2.9)). Firstly, notice the relation

1Pn(s − 1
2)

1x(s − 1
2)
= B̃n−1

ρ̃(s)
∇(n−1)

n−1 [ρn−1(s)] = ∇
∇x1(s)

∇
∇x2(s)

. . .
∇

∇xn−1(s)
[ρ̃n−1(s)] = P̃n−1(s)

whereB̃n−1 = −λnBn, ρ̃(s) = ρ1(s − 1
2), ρ̃n−1(s) = ρn(s − 1

2). In general, the polynomials
P̃n−1(s) on the right-hand side of this equation are not the same asPn(s) (because they can
have a different weight function). Since the following connection between weight functions
holds for theq-analogue of dual Hahn polynomials in the latticex(s) = [s]q [s + 1]q ,

ρ̃n−1(s, a
′, b′, c′) = ρn(s − 1

2, a, b, c) = ρn−1(s, a + 1
2, b − 1

2, c + 1
2) (13)

we conclude thatP̃n−1(s) coincides with the dual Hahnq-polynomial characterized by new
parametersa′ = a + 1

2, b′ = b − 1
2, andc′ = c + 1

2. Then we obtain the following formula
for the finite difference derivative:

W(c)
n (s + 1

2, a, b)q −W(c)
n (s − 1

2, a, b)q = q−3n+3[2s + 1]qW
(c+ 1

2 )

n−1 (s, a + 1
2, b − 1

2)q . (14)

The formula (14) will be calledthe first differentiation formulafor the polynomials
W(c)

n (s, a, b)q .
Now, if we change the parametersa, b andc and the variables in ρ(s) by a′ = a− 1

2,
b′ = b + 1

2, c′ = c − 1
2, s ′ = s − 1

2, we find

ρ̃n+1(s − 1
2, a′, b′, c′) = q−2n+a+c−b+ 1

4 ρn(s, a, b, c). (15)

Then, from the Rodrigues formula (5),

P̃n+1(s − 1
2, a′, b′, c′) = B̃n+1

ρ̃(s − 1
2, a′, b′, c′)

∇(n+1)

n+1 [ρ̃n+1(s − 1
2, a′, b′, c′)]

and using equation (15) we obtain

P̃n+1(s − 1
2, a′, b′, c′) = B̃n+1q

−2n+a+c−b+ 1
4

Bnρ̃(s − 1
2, a′, b′, c′)

∇ρ(s, a, b, c)Pn(s)

∇x(s)
.

As in the previous case, we notice that on the left-hand side of this equation the dual Hahn
q-polynomials witha′, b′, c′ parameters appear which are different from the corresponding
parameters on the right-hand side. Namely,a′ = a − 1

2, b′ = b + 1
2, andc′ = c − 1

2. As a
result the following formula for the finite difference derivative holds:

q2n−a−c+b[n+ 1]q [2s]qW
(c− 1

2 )

n+1 (s − 1
2, a − 1

2, b + 1
2)q

= qs [s − a]q [s − c]q [s + b]qW
(c)
n (s − 1, a, b)q

−q−s [s + a]q [s + c]q [b − s]qW
(c)
n (s, a, b)q . (16)

Formula (16) will be calledthe second differentiation formulafor the polynomials
W(c)

n (s, a, b)q .
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4. Clebsch–Gordan coefficients for theq-algebra SUq(2) and the dual Hahn
q-polynomials

The quantum algebraSUq(2) is defined by three generatorsJ0, J+, andJ− with the following
properties (see [35, 36] and references therein):

[J0, J±] = ±J± [J+, J−] = [2J0]q J
†
0 = J0 J

†
± = J∓.

Here we use the standard notation [A, B] = AB − BA for the commutators, [n]q for q-
numbers and [2J0]q means the corresponding infinite formal series. LetDJ1 andDJ2 be two
irreducible representations (IR) of the algebraSUq(2). The tensor product of two irreducible
representationsDJ1 ⊗DJ2 can be decomposed into the direct sum ofIR DJ components

DJ1 ⊗DJ2 =
J1+J2∑

J=|J1−J2|
⊕DJ .

For the basis vectors of theIR DJ we have

|J1J2, JM〉q =
∑

M1,M2

〈J1M1J2M2|JM〉q |J1M1〉q |J2M2〉q (17)

where a symbol〈J1M1J2M2|JM〉q denotes theCGCs for the quantum algebraSUq(2). In
[35–38] it has been proved that theseCGCs satisfy the following recurrence relation:

({[J −M]q [J +M]q [J1+ J2+ J + 1]q [J2− J1+ J ]q [J − J2+ J1]q [J1+ J2− J + 1]q}
×{[2J + 1]q [2J − 1]q [2J ]2

q}−1)
1
2 〈J1M1J2M2|J − 1M〉q

−{(qJ [J +M + 1]q − q−J [J −M + 1]q)([2J ]q [2J2+ 2]q
−[2]q [J2+ J1− J + 1]q [J + J1− J2]q)}{[2J + 2]q [2J ]q [2]q}−1

×〈J1M1J2M2|JM〉q
+({[J −M + 1]q [J +M + 1]q [J1+ J2+ J + 2]q [J2− J1+ J + 1]q

×[J − J2+ J1+ 1]q [J1+ J2− J ]q}{[2J + 3]q [2J ]q [2J + 2]2q}−1)
1
2

×〈J1M1J2M2|J + 1M〉q
+{(qJ2+M1[J2+M2+ 1]q − qM1−J2[J2−M2+ 1]q)}
×{[2]q}−1〈J1M1J2M2|JM〉q = 0. (18)

Comparing the difference equation (2) for theq-analogue of the dual Hahn polynomials
W(c)

n (s, a, b) in the non-uniform latticex(s) = [s]q [s + 1]q with the recurrence relation for
CGCs, we conclude thatCGCs 〈J1M1J2M2|JM〉q can be expressed in terms of the dual Hahn
q-polynomials by the formula

(−1)J1+J2−J 〈J1M1J2M2|JM〉q =
(ρ(s)∇x(s − 1

2))
1
2

dn

W(c)
n (x(s), a, b)q−1

|J1− J2| < M n = J2−M2 s = J a = M

c = J1− J2 b = J1+ J2+ 1.

(19)

Hereρ(x) anddn denote the weight function and the normalization factor for the polynomials
W(c)

n (x(s), a, b)q−1, respectively. It should be noted that in (19) the parameterq is prescribed
to theCGC 〈J1M1J2M2|JM〉q , meanwhile the inverse parameterq−1 corresponds to the dual
Hahnq-polynomial.
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From the last expression and the orthogonality (3) of theW(c)
n (s, a, b) polynomials the

orthogonality of theCGCs follows, i.e.∑
J,M

〈J1M1J2M2|JM〉q〈J1M
′
1J2M

′
2|JM〉q = δM1M

′
1
δM2M

′
2
. (20)

In the same way, we can show using (19) that the recursive relation (4) for the dual Hahn
q-polynomialsW(c)

n (s, a, b) is equivalent to the therecursive relationin M1 andM2 for the
CGCs [35–38]

q−2([J2−M2+ 1]q [J2+M2]q [J1+M1+ 1]q [J1−M1]q)
1
2 〈J1M1+ 1J2M2− 1|JM〉q

+([J2+M2+ 1]q [J2−M2]q [J1+M1]q [J1−M1+ 1]q)
1
2

×〈J1M1− 1J2M2+ 1|JM〉q
+(q−2M1[J2+M2+ 1]q [J2−M2]q + q2M2[J1+M1+ 1]q [J1−M1]q
+[M + 1

2]2
q − [J + 1

2]2
q)q
−M2+M1−1〈J1M1J2M2|JM〉q = 0. (21)

The phase factor(−1)J1+J2−J in (19) was obtained by the comparison of the values of the
W(c)

n (s, a, b) polynomials at the ends of the interval of orthogonality (see (10) and (11))
with the corresponding values of theCGCs atJ = M andJ = J1 + J2 + 1. Using relation
(19) and the finite difference derivative formulae (14) and (16) we find the two recurrence
relations for theCGCs:

q−J−1

(
[J −M + 1]q [J1+ J2+ J + 2]q [J2− J1+ J + 1]q [2J + 2]q

[2J + 3]q [J2−M2]q

)1
2

×〈J1M1J2M2|J + 1M〉q

+
(

[J +M + 1]q [J1+ J2− J ]q [J − J2+ J1+ 1]q [2J + 2]q
[2J + 1]q [J2−M2]q

)1
2

×〈J1M1J2M2|JM〉q
= q(−J−J2−M2+M−1/2)[2J + 2]q〈J1M1J2− 1

2M2+ 1
2|J + 1

2M + 1
2〉q (22)

and

q−J

(
[J −M]q [J1+ J2+ J + 1]q [J2− J1+ J ]q [2J ]q

[2J − 1]q [J2−M2+ 1]q

)1
2

〈J1M1J2M2|J − 1M〉q

+
(

[J +M]q [J1+ J2− J + 1]q [J − J2+ J1]q [2J ]q
[2J + 1]q [J2−M2+ 1]q

)1
2

〈J1M1J2M2|JM〉q
= q(−J−J2−M2+M−1)/2[2J ]q〈J1M1J2+ 1

2M2− 1
2|J − 1

2M − 1
2〉q . (23)

The formulae (22) and (23) can be obtained independently using theq-analogue of

the quantum theory of angular momentum [35–38]. LetT
1
2

µ (2) be a tensor operator
of rank 1

2 acting on the variablesJ2, M2. If we calculate the matrix element

〈J1M1J2M2|T
1
2

µ (2)|J ′1J ′2; J ′M ′〉q , on the one hand, using the Wigner–Eckart theorem for
SUq(2) [35] we find that

〈J1M1J2M2|T
1
2

µ (2)|J ′1J ′2; J ′M ′〉q

= − δJ1,J
′
1

∑
M ′1M

′
2

〈J ′1M ′1J ′2M ′2|J ′M ′〉q
〈J ′2M ′2 1

2µ|J2M2〉q√
[2J2+ 1]q

〈J2||T 1
2 ||J ′2〉q .
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On the other hand, the application of the algebra of tensor operators [38] gives

〈J1M1J2M2|T
1
2

µ (2)|J ′1J ′2; J ′M ′〉q
=

∑
J ′′M ′′
〈J1M1J2M2|J ′′M ′′〉q〈J1J2; J ′′M ′′|T

1
2

µ (2)|J ′1J ′2; J ′M ′〉q

=
∑
J ′′M ′′
〈J1M1J2M2|J ′′M ′′〉q

〈J ′M ′ 12µ|J ′′M ′′〉q√
[2J ′′ + 1]q

(−1)J1+J2+J ′′+ 1
2

×√
[2J ′′ + 1]q [2J ′ + 1]q

{
J1 J ′′ J2
1
2 J ′2 J ′

}
q

〈J2||T
1
2 ||J ′2〉q .

Putting in both of these equationsJ ′ = J+ 1
2, M ′ = M+ 1

2, J ′2 = J2− 1
2, J ′1 = J1, M ′1 = M1,

M ′2 = M2+ 1
2, µ = − 1

2 and taking into account that at such a choice of the angular momenta
and their projections we obtain that only the valuesM ′′ = M, J ′′ = J, J + 1 are possible.
From this fact the relation (22) follows.

To obtain equation (23) we putJ ′ = J− 1
2, M ′ = M− 1

2, J ′2 = J2+ 1
2, J ′1 = J1, M ′1 = M1,

M ′2 = M2 − 1
2, µ = 1

2. All necessary quantities{ J1 J ′′ J2
1
2 J ′2 J ′ }q and 〈J1M1

1
2µ|JM〉q are

tabulated in [35, 36], respectively.
From relation (19) we also see that the dual Hahnq-polynomial withn = 0 corresponds

to the CGC with the maximal value of the projection of the angular momentumJ2, i.e.
M2 = J2. For this reason it will be calledthe backward way(we start fromn = 0 and
obtain theCGC at M2 = J2, for n = 1 the CGC at M2 = J2 − 1, and so on). There exists
another possibility corresponding to the inverse case, i.e. when the polynomial withn = 0
is proportional to theCGC with the minimal value ofM2 = −J2, this relation will be called
the forward way(we start fromn = 0 and obtain theCGC at M2 = −J2, whenn = 1 we
find the CGC at M2 = −J2 + 1, and so on). In fact, comparing the difference equation for
the q-analogue of the dual Hahn polynomialsW(c)

n (s, a, b) (2) with the recurrence relation
for CGCs, we conclude thatCGCs 〈J1M1J2M2|JM〉q can also be expressed in terms of the
q-dual Hahn polynomials as follows:

(−1)J1+J2−J 〈J1M1J2M2|JM〉q =
√

ρ(s)∇x(s − 1
2)

dn

W(c)
n (x(s), a, b)q

|J1− J2| < −M n = J2+M2 s = J a = −M

c = J1− J2 b = J1+ J2+ 1.

(24)

Here, as earlier,ρ(x) and dn denote the weight function and the normalization factor for
the polynomialsW(c)

n (x(s), a, b)q , respectively.
Notice that if in the previous relation we provide the change of parametersM1 = −M1,

M2 = −M2, M = −M, andq = q−1 then the right-hand side of (24) coincides with the
right-hand side of (19). Then, we can conclude that for theCGCs the followingsymmetry
property holds:

(−1)J1+J2−J 〈J1−M1J2−M2|J −M〉q−1 = 〈J1M1J2M2|JM〉q . (25)

To conclude this section we provide table 2 in which the corresponding properties of
the Hahn q-polynomials h

(α,β)
n (s, N)q defined on the exponential latticeq2s [19] (see

also [24, 26]) and the dual Hahnq-polynomialsW(c)
n (x(s), a, b)q defined on the lattice

x(s) = [s]q [s + 1]q are compared with the corresponding properties for theCGCs of the
q-algebraSUq(2). This helps us to establish the inter-relation between these two types of
orthogonalq-polynomials.



1444 R Álvarez-Nodarse and Yu F Smirnov

Table 2. CGCs and theq-analogue of Hahn polynomials.

Pn(s)q 〈J1M1J2M2|JM〉q
Finite difference equation (2) for theW(c)

n (x(s), a, b)q and Recurrence relation (18) for theCGCs

TTRR (4) for h
(α,β)
n (s, N)q

Finite difference equation (2) for thehα,β
n (s, N)q and Recurrence relation (21) for theCGCs

TTRR (4) for W
(c)
n (x(s), a, b)q

ρ(s)

d2
n

in (19) 〈J1M1J2J2|JM〉2q
ρ(s)

d2
n

in (24) 〈J1M1J2 − J2|JM〉2q
Differentiation formulae (14) and (16) for Recurrence relations (22) and (23) for
W

(c)
n (x(s), a, b)q the CGCs

Equivalence of relation (19) and (24) Symmetry property (25) for theCGCs
Orthogonality relation (3) Orthogonality relations (20)

Comparing the finite difference equation and theTTRR which the polynomials
h

α,β
n (s, N)q andW(c)

n (x(s), a, b)q satisfy, we conclude

The finite difference equation
(2) for the dual Hahn

q-polynomialsW(c)
n (x(s), a, b)q

←→
Recurrence relation (4)

for the q-Hahn
polynomialsh

(α,β)
n (s, N)q

Recurrence relation (4)
for the dual Hahn

q-polynomialsW(c)
n (x(s), a, b)q

←→
The finite difference equation

(2) for theq-Hahn
polynomialsh

(α,β)
n (s, N)q

Moreover, since for the Hahnq-polynomialsh(α,β)
n (s, N)q in the exponential latticex(s) =

q2s [19] the following relation holds (for the classical case see [24] and for theq-case see
[19]):

(j1m1j2m2|jm)q−1 = (−1)s

√
ρ(s)1x(s − 1

2)

d2
n

hαβ
n (s, N)q

wheres = j2−m2, N = j1+ j2−m+1, α = m− j1+ j2, β = m+ j1− j2, andn = j −m.
ρ(x) and dn denote the weight function and the normalization factor for the polynomials
h

(α,β)
n (s, N)q given by formulae

ρ(x) = q
1
2 α(α+2N+2s−3)+ 1

2 β(β+2s−1) [α +N − 2− 1]![β + s]!

[N − s − 1]![s]!

d2
n = (q − q−1)2nB2

n

[n]![ α + n]![ β + n]![ α + β +N + n]!

[N − n− 1]![α + β + n]![ α + β + 2n+ 1]!

×q2α+2N+N(N−1)+(N−1)(2α+β+N)+ 1
2 β(β+1)+n(α+β+2)

whereBn = (−1)n/([n]!q2n(q − q−1)n). We obtain the following relation between Hahn
q-polynomialsh

(α,β)
n (s, N)q and the dual Hahnq-polynomialsW(c)

n (x(s), a, b)q :

(−1)s+nq+(s−3)(β/2+α)+3α−2nα− 3
2 (n+s)+(n−s)(N−(α+β)/2)h(α,β)

n (s, N)q

= q2n[s]q ![N − s − 1]q ![n+ β]q !

[n]q ![N − n− 1]q ![s + β]q !
W((β−α)/2)

s

(
tn,

β + α

2
,
β + α

2
+N

)
q
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tn = sn(sn + 1) sn = β + α

2
+ n s, n = 0, 1, 2, . . . , N − 1

)
.

(26)

Observe that in the limitq → 1 this relation takes the form of the classical relation between
the classical Hahn and dual Hahn polynomials [24, p 76, equation (3.5.14)]).

5. The explicit formula for the CGCs. Its representation in terms of a basic
hypergeometric function

5.1. The explicit formula for the Clebsch–Gordan coefficients of theSUq(2) quantum
algebra

In order to obtain the explicit formula for theCGC 〈J1M1J2M2|JM〉q we will use the
explicit expression for the dual Hahnq-polynomials (9) and equation (19), connecting them
with CGCs. Providing some straightforward calculations we obtain the following general
analytical formula to calculate theCGCs for the algebraSUq(2):

〈J1M1J2M2|JM〉qq− 1
2 (J (J+1)−J1(J1+1)+J2(J2+1))+(M+1)J2+J (J2−M2)

= (−1)J1+J2−J

(
[J2−M2]q ![J1−M1]q ![J −M]q ![J2+M2]q !

[J +M]q !

)1
2

×
(

[J + J1+ J2+ 1]q ![J2− J1+ J ]q ![J2+ J1− J ]q ![2J + 1]q
[J1+M1]q ![J1− J2+ J ]q !

)1
2

×
∞∑

k=0

(−1)kqk2+2Jk−(J2−M2−1)k[J + J1− J2+ k]q ![J +M + k]q !

[k]q ![2J + 1+ k]q ![J −M1− J2+ k]q ![J − J1+M2+ k]q !

× [2J − J2+M2+ k]q ![2J − J2+M2+ 2k + 1]q
[J2−M − 2− k]q ![J + J1+M2+ k + 1]q ![J1+ J2− J − k]q !

. (27)

5.2. Representation in terms of the basic hypergeometric function

In order to find the representation of theCGCs in terms ofq-hypergeometric functions we
can use the representation of the dual Hahnq-polynomials (12). Then, from formula (19)
we obtain

(−1)J1+J2−J 〈J1M1J2M2|JM〉q−1 =
√

ρ(s)[2s + 1]q
dn

(a − b + 1|q)n(a + c + 1|q)n

qn/2(s+ 1
2 (n−1))− 1

2 (c+a−b+1)[n]q !

× 3F2

(−n, a − s, a + s + 1
a − b + 1, a + c + 1

; q, q
1
2 (b−c−n)

)
(28)

where |J1 − J2| < M, n = J2 − M2, s = J , a = M, c = J1 − J2, b = J1 + J2 + 1,
andρ(x) anddn denote, as usual, the weight function and the normalization factor for the
polynomialsW(c)

n (x(s), a, b)q .

6. Clebsch–Gordan coefficients for theq-algebra SUq(1, 1) and the dual Hahn
q-polynomials

In the previous sections we have studied the connection between dual Hahnq-polynomials
and theCGCs of theSUq(2) quantum algebra. Let us now study the connection between
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the dual Hahn polynomials and the Clebsch–Gordan coefficients of the quantum algebra
SUq(1, 1) (for a survey see [2, 39]). The quantum algebraSUq(1, 1) is defined by three
generatorsK0, K+ andK− with the following properties [35]:

[K0, K±] = ±K± [K+, K−] = −[2K0]q K
†
0 = K0 K

†
± = K∓.

Since this algebra is non-compact theIR can be classified in two series, the continuous and
the discrete series ofIR. In this work we will study the discrete case only, more precisely
the positivediscrete seriesDj+. The basis vectors|jm〉q of the IR Dj+ can be found from
the lowest weight vector|jj + 1〉 (K−|jj + 1〉 = 0) by the formula

|jm〉 =
√

[2j + 1]q !

[j +m]q ![m− j − 1]q !
K

m−j−1
+ |jj + 1〉.

Let Dj1+ and Dj2+ be two IR from the positive discrete series of the algebraSUq(1, 1).
The tensor product of these twoIR, Dj1+ ⊗ Dj2+, can be decomposed into the direct sum
of IR Dj+ components

Dj1+ ⊗Dj2+ =
∞∑

j=j1+j2+1

⊕Dj+.

For the basis vectors of theIR Dj+ we have

|j1j2, jm〉q =
∑

m1,m2

〈j1m1j2m2|jm〉q |j1m1〉q |j2m2〉q (29)

where the symbols〈j1m1j2m2|jm〉q denote theCGCs for the quantum algebraSUq(1, 1).
In [19] it was proved that theseCGCs satisfy the following recurrence relation:

([m2− j2− 1]q [j2+m2]q [m1− j1]q [j1+m1+ 1]q)
1
2 〈j1m1+ 1j2m2− 1|jm〉q

+q2([m2− j2]q [j2+m2+ 1]q [j1+m1]q [m1− j1− 1]q)
1
2

×〈j1m1− 1j2m2+ 1|jm〉q + (q−2m1[j2+m2+ 1]q [m2− j2]q
+q2m2[j1+m1+ 1]q [m1− j1]q + [j + 1

2]2
q − [m+ 1

2]2
q)q
−m2+m1+1

×〈j1m1j2m2|jm〉q = 0. (30)

Comparing the recurrence relation for theq-analogue of the dual Hahn polynomials
W(c)

n (s, a, b) (4) with (30) for CGCs, we conclude thatCGCs 〈j1m1j2m2|jm〉q can be
expressed in terms of the dual Hahnq-polynomials by the formula

(−1)m−j−1〈j1m1j2m2|jm〉q =
√

ρ(s)∇x(s − 1
2)

dn

W(c)
n (x(s), a, b)q−1

n = m1− j1− 1 s = j a = j1+ j2+ 1 c = j1− j2 b = m.

(31)

We obtain the phase factor(−1)m−j−1 comparing the values of theW(c)
n (s, a, b) polynomials

at the ends of the interval (10) with the corresponding values of theCGCs. Now we can
observe that if we provide the following substitution:

J1 = m+ j1− j2− 1

2
M1 = m1−m2+ j1+ j2+ 1

2
J = j

J2 = m− j1+ j2− 1

2
M2 = m2−m1+ j1+ j2+ 1

2
M = j1+ j2+ 1

the right-hand sides of equations (19) and (31) become identical (see also [19]). This implies
that for theCGCs for these two quantum algebras the following relation holds:

〈J1M1J2M2|JM〉suq (2) = 〈j1m1j2m2|jm〉suq (1,1). (32)
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Now we can obtain a general formula to calculate theCGCs for the SUq(1, 1) algebra.
Using the explicit expression for theq-analogue of the dual Hahn polynomials (9) and
equation (31) we obtain

〈j1m1j2m2|jm〉qq− 1
2 (j (j+1)+j1(j1+1)−j2(j2+1))+(m−1)(j1+1)+j (m1−j1−1)

= (−1)m−j−1

(
[j +m]q ![m− j − 1]q ![m2+ j2]q !

[j1+m1]q !

)1
2

×
(

[j − j1− j2− 1]q ![j2− j1+ j ]q ![m1− j1− 1]q ![m2− j2− 1]q ![2j + 1]q
[j + j1+ j2+ 1]q ![j1− j2+ j ]q !

)1
2

×
∞∑

k=0

(−1)kqk2+2jk−(m1−j1−2)k[2j + j1+ 1−m+ k]q ![j − 1+ j2+ j + k + 1]q !

[k]q ![2J + 1+ k]q ![m1− j1− 1− k]q ![j −m1− j2+ k]q ![m− j − 1− k]q !

× [j + j1− j2+ k]q ![2j + j1−m1+ 2k + 2]q
[j −m1+ j2+ k]q ![j + j1+m2+ k + 1]q !

. (33)

Using formula (31) we find the following representation for theCGC of the SUq(1, 1)

quantum algebra in terms of theq-hypergeometric function:

(−1)m−j−1〈j1m1j2m2|jm〉q−1 =
√

ρ(s)[2s + 1]q
dn

(a − b + 1|q)n(a + c + 1|q)n

qn/2(s+ 1
2 (n−1))− 1

2 (c+a−b+1)[n]q !

× 3F2

(−n, a − s, a + s + 1
a − b + 1, a + c + 1

; q, q
1
2 (b−c−n)

)
(34)

where n = m1 − j1 − 1, s = j , a = j1 + j2 + 1, b = m, c = j1 − j2. We note that
ρ(x) and dn denote the weight function and the normalization factor for the polynomials
W(c)

n (x(s), a, b)q , respectively.
To conclude this section we remark that the same procedure can be applied to the

negative discrete series ofIR. Moreover, from the finite difference equation and the
differentiation formulae (2), (14) and (16) we can obtain some new recurrence relations
for the CGCs of theSUq(1, 1) quantum algebra.
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Appendix. Calculation of the main data of the dual Hahnq-polynomials in the
non-uniform lattice x(s) = [s]q[s+ 1]q

The dual Hahnq-polynomials are the polynomial solution of the second-order finite
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difference equation of the hypergeometric type on the non-uniform latticex(s)= [s]q [s+1]q :

qs+c+a−b+2[s − a]q [s + b]q [s − c]q
[2s + 1]q

1

[∇W(c)
n (s, a, b)q

[2s − 2]q

]
+{−[s]q [s + 1]q + qc−b+1[c]q [b]q + qa+c−b+1[a + 1]q [b − c − 1]q}

×1W(c)
n (s, a, b)q

[2s]q
+ q−n+1[n]qW

(c)
n (s, a, b)q = 0. (35)

Sincex(−s − 1) = x(s) and1x(s − 1
2) = −1x(t − 1

2)|t=−s−1, the coefficientτ(s) in (35)
is completely determined by the formula ([24, equation (3.5.3), p 75])

τ(s) = σ(−s − 1)− σ(s)

1x(s − 1
2)

.

The k-order finite difference derivative of the polynomialsW(c)
n (s, a, b)q is defined as

vkn(s) = 1

1xk−1(s)

1

1xk−2(s)
. . .

1

1x(s)
[W(c)

n (s, a, b)q ] ≡ 1(k)[W(c)
n (s, a, b)q ]

wherexm(s) = x(s +m/2), and satisfies the following equation of the same type

qs+c+a−b+2[s − a]q [s + b]q [s − c]q
[2s + 1− k]q

1

[ ∇vkn(s)

[2s − k − 2]q

]
+ τn(s)

1vkn(s)

[2s − k]q
+ µkvkn(s) = 0

(36)

(see [24, p 62, equation (3.1.19)]). Furthermore, we have

τk(s) =
σ(s + k)− σ(s)+ τ(s + k)1x(s +m− 1

2)

1xk−1(s)

µk = q−n+1[n]q +
k−1∑
m=0

1τm(x)

1xm(x)
.

Thus, as a result, we obtain

τk(s) = −q2k[s + k
2]q [s + k

2 + 1]q + qc−b+k+1[c + k
2]q [b − k

2]q

+qa+c−b+1− k
2 [a + k

2 + 1]q [b − c − k − 1]q . (37)

The solution of the Pearson-type finite difference equation

1

1x(s − 1
2)

[σ(x)ρ(x)] = τ(x)ρ(x)

gives the weight functionρ(s),

ρ(s) = q−s(s+1)[s + a]q ![s + c]q !

[s − a]q ![s − c]q ![s + b]q ![b − s − 1]q !
.

Using the definitionρn(s) = ρ(n+ s)
∏n

k=1 σ(s + k) (see (5)) we obtain

ρn(s) = q−s(s+1+n)−n2/2+n(a+c−b+ 3
2 )[s + a + n]q ![s + c + n]q !

[s − a]q ![s − c]q ![s + b]q ![b − s − n− 1]q !
. (38)

Let us find the squared normalization factor for the dual Hahnq-polynomials. Firstly,we
use the formula ([24, section 3.2.2, p 64, equation (3.7.15)])

d2
n = q−

3
2 n2+ 3

2 n[n]q !B2
nSn (39)
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whereBn = (−1)n/[n]q ! and Sn is a sum

b−n−1∑
si=a

ρn(si)1xn(si − 1
2). (40)

To calculate it we will use the identity (N = b − a − 1 ∈ N)

Sn = Sn

Sn+1

Sn+1

Sn+2
. . .

SN−2

SN−1
SN−1. (41)

From (38) and (40) we find

SN−1 = [a + c +N − 1]q !

[a − c]q !
q−a2−aN−(N−1)2/2+(N−1)(a+c−b+ 3

2 ).

To obtainSn we will follow [24, pp 105, 106]. Using the formulae given on the mentioned
pages, we find thatSn/Sn+1 = 1/σ(x∗n−1), where x∗n−1 is the solution of the equation
τn−1(x

∗
n−1) = 0. Some straightforward but tedious algebra gives the following expression:

σ(x∗n−1) = q−2a+2c−2b+n+2[a + c + n]q [b − a − n]q [b − c − n]q .

Now, collecting the expressions (39)–(41), we find that the squared normalization factor for
the dual Hahnq-polynomials is equal to

d2
n = q−ab−bc+ac+a+c−b+1+2n(a+c−b)−n2+5n [a + c + n]q !

[n]q ![b − c − n− 1]q ![b − a − n− 1]q !
.

To obtain the leading coefficientan of the polynomial and the coefficientsαn, βn, andγn

of the three-term recurrence relation (4) we use [24, equation (3.7.2), p 100] and formulae

αn = an

an+1
γn = an−1

an

d2
n

d2
n−1

βn = −
αnW

(c)

n+1(a, a, b)q + γnW
(c)

n−1(a, a, b)q

W
(c)
n (a, a, b)q

− x(a).
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